Joke Collection Website - Cold jokes - The n power of x plus the n power of y equals the n power of z, and n is a natural number, which is not equal to 2. ,
The n power of x plus the n power of y equals the n power of z, and n is a natural number, which is not equal to 2. ,
Fermat is an amateur mathematician who has never published a mathematical article in his life. He likes numbers. He met the Pythagorean equation that most of us learned in school: x 2+y 2 = z 2. Until today, countless school children are still learning to say, "The square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides." Pythagoras' integer solutions are particularly interesting, such as beautiful right triangle solutions like hooks, three strands, four strands and five strands. Fermat noticed that when the exponent of the equation is greater than 2, he may not have an integer solution. At the same time, he wrote in Latin and he found a wonderful proof of this conclusion. Unfortunately, the blank space in the book is too small to write down. However, people have never found such proof. Fermat wrote many such eyebrows (some of which were used to mock his contemporary mathematicians). Centuries later, all the questions raised in these eyebrows were answered again, but this one was not, namely Fermat's last theorem. This is the famous Fermat theorem.
Wiles, the terminator of Fermat's Last Theorem, finally proved this theorem in 1996, so he won the only special prizes of Fields Prize, Wolf Prize and Shaw Prize in the world.
Recently, someone found a counterexample.
A professor at Stetson University found that wiles's counterexample of "proof" of Fermat's Last Theorem was wrong. Fermat's Last Theorem pointed out that for any integer n greater than or equal to 3, a n+b n = c n, there is no nonzero solution. andrew wiles completed the proof of this proposition in 1995. Yesterday, a professor of mathematics at the University of Stetson in the United States found a counterexample of Fermat's Last Theorem. He found a very clever method to find out whether there are natural numbers Y and Z for given natural numbers X and N, so that X N+Y N = Z N. Using this algorithm, he found several n & gt=3, thus overturning Fermat's last theorem and declaring wiles's "proof" wrong. The number of these counterexamples is quite large, and the smallest group number is 1297 bits, which satisfies x 738+y 738 = z 738, where (x, y, z)= 1
(
2675740665982 1805 1407852646800 103722744984305425 12 1508209866487266 148254426280809 1 409263288326737 142002 148749934726 109 139254900 1 16220406265850072 136 1 1 1 5 1292983065 1986 18746 10662 225354488 1885933434709673389867009228596678085502285308023374893024670 1 2686745009 1095 180580 1047908839 1269648 1 652368675040 127 1 1060969236304 1592207 / kloc-0/43055897906730485 133 1649552552467 17828 1406985568026629647622 220237594738 159 14800043 1 9 152597 12326584065957666809 14087737 164 1 13947666256743 1855728 1 1 766528273340626748695645053988433 17850004262057083707748 1 13800290 14447252895374923 1 157766083
9540 17562480644457089443 1403378660724 1345 12583707284333520 15 10 1797 15 1 7953476087293 128456693 00462 1 1 1753 1 158 1378083485064420994969072 1 182028029 / kloc-0/8242 1337845322 192 18776394354 13402760236 174829 1464398044228342375589 19 1 80532370 1478727070 1049209222350750 192 15005 1562424 245875887865995964776797 14 1 66845958342737936 15646925335 1 18375093257232442272644 1254850438030534708 1 1646 595876045708 1 / kloc-0/ 1 1505546466943 144373 17 133474 15735904949662684655 124330034465272628 1 734065438+ 07237043262 12964 152602007685240 12 17843685 156769676040324928 1 1068237873388077 / kloc-0/938 10425 19556 1572687669 179 1204327 1
34895 1 1383 13542888688580483 1635 1 17 165699249572694 188443258666996 1554383 / kloc-0/73727 1 1 337747500 1449850028387872947767 10705 1202 167557779429557887970783958860265407 1 17954 162686093 144623,
2676 17300982827 16803947593724260480255296034 1 14 18793640336 124760895 1058 1 8476984460420976780905654792098 6625 17637350299686500668308633704296523790793770843468344205990387934373542806 1442826976452 1 820856869592028 1993 1748773432 94 1532205739 19484984860674040008608324260743788009678678 13479487374025723649 / kloc-0/ 15349375269577 18260309239824 1682 127 136674777996 182 19760634727989707 1373 / kloc-0/64888589084990528687692 1929762 1659929 1230543 1576543 8+05990 144 19207 15 19564567 / kloc-0/5983420079797690366700283754673229023 1 14078994546728697 177797774 1826583 8508637000 15059770083 1 84 1 19798302 13643003235000 106306 15496 142894229239856 14940993 1755643654 38+0 1 48398780 18 144892 105247605 14 156424887 1 1086 1908486 18 162 196 / kloc-0/9 1766 5438+0797 12787 196080 13585739274306 135 1805539054944065099 16237625 184 / kloc-0/90 100394708740095790423456493 57228 17745738 129553484440753792362088684776 1498994659548002628 1724030 / kloc-0/ 168607808 1883295 16 1 16 5438+04666757 1957304645353 1582473303 18463636427 1 72652846498235206 12388 1370670283 1738765327394 1969745295 860 1 19437806 1644472 10 1 74867059933366838745557909 15740380 123397523436974629 1506735585663 1 146 5438+08570778 1 1682 / kloc-0/543 1652936089940 1540933 1697634 1655 197768 1936 1328252629 13569 1 4854067698 149957 1704 160630859270924890545 1534737560 18622667868787 1 1376390 10679 / kloc-0/23992586406665438+ 08094522 188956 17 19248527 12273669 19 1076 1 135652766 1 93220349785 10 1486 1529835200408 1683209 185728255,
2678477778331525795569644476409747215608969442768401078586565715776433686 04799050830378 130705268845 1329 1 104499500
96457982569706735378040 16 138594294938506586949264 1856 190 15283772 140 109 1 093923455586697 12627976543 8+0546688 1940 138860856786 10396700539278434453320045 174082 1585486 1 366 1 1 15874965802 1455452040 347656680703203843008928725878 13398 135902405 1 1874399 / kloc-0/485674644407 13387036095050 17025243 1094 137708 2580527 13697387 1837 14 1 4879405345006534898 182539 1529769 124976382 1775693 1582975 18260620049867 590096585369 17 1 5687268 12598 1 1990 13375 19452683376 13 143003 1295930 148 1 252449590949 083503404482385 1300 1 18037035889 14526990039773990863235526 120 105895868749988 1078950474500072972499390070635989 14
5 1604253602524 109 179 17424020 13966998 19278 177375598746896239386 1358795 1 6490344339 17468727654 38+0287 1784 14000473733 19344925 109958 154680265 16530922284568937 1 67 12995 1599326240065 1465438+ 03852 1096 18904950705859 158379822654986979 1059405379667466 / kloc-0/9629469437784568908050290 15565092726 17407 1366 5438+0650535 107396972369308057459 12 184085270273 178866770959607803 1262
)
(Transferred from M67.com)
This counterexample may be a joke on April Fool's Day, because the publication date happens to be 1 April.
All of the above are related to the history of Fermat's Last Theorem.
- Previous article:I dreamed that my husband and I were joking about his remarriage.
- Next article:New Year Couplets Year of the Dog Spring Couplets
- Related articles
- What happened to the stars?
- Wonderful short message joke
- There is an old joke: a man occasionally falls to the ground, only to get up and fall down, but he says, "pawn!" " If I had known there was another fall, I wouldn't have climbed up. "
- Is Thor's Universal Buddha the real Taiyi?
- What's the latest movie in Datang Hengdian Studios?
- Xiaomi executives resigned due to diaosi¡¯s remarks. How terrible is online violence?
- A sad and cruel joke
- Dad makes funny jokes.
- Why is the human observation collection gone?
- What are the numerical idioms of Baiwhat?